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Abstract— The Land Information System (LIS) is designed
to perform global land surface simulations at down to 1-km
resolution in near-realtime. Such an unprecedented scale and
intensity pose many challenges in computational technology. In
this report we will demonstrate our developments and innova-
tions in high performance computing to meet these challenges
and reach our performance goals. These contributions include
a fault-tolerant job management system running on a Linux
cluster, high-performance, high-availability parallel 10 based on
GrADS-DODS (GDS) servers with dynamic load-balancing and
distributed data storage, and highly scalable data replication with
peer-to-peer (P2P) technology. These developments are critical
in making LIS a high performance Earth System modeling
component with broader applications, and made LIS suitable
for production runs in Grid computing environments, and readily
interoperable with other modeling components over the Internet.

I. INTRODUCTION

NASA, Goddard Space Flight Center has developed a global
Land Information System (LIS) [10], [12] capable of modeling
land-atmosphere interactions at spatial resolutions down to
1km. The scientific basis of LIS is an ensemble of land surface
models (e.g., CLM [4], Noah [11], VIC [16]) run offline using
satellite-based precipitation, radiation and surface parameters,
in addition to model-derived surface meteorology. LIS’ design
also supports the ESTO/CT Round-3 CAN goals of portabil-
ity, interoperability, and the use of advanced computational
technologies.

As reported at the 2003 ESTC, LIS’ external interoperability
is supported by the adoption of various Earth system modeling
standards such as the Earth System Modeling Framework
(ESMF) [6]; the PRISM/Assistance for Land Modeling Activi-
ties (ALMA) [1] for coupling with other Earth system models,
including the Goddard Cumulus Ensemble (GCE) model and
the Weather Research and Forecasting (WRF) model. At the
2004 ESTC, we focus on our achievements and innovations in
the area of high performance computing and communication,
including parallel and fault-tolerant job management, parallel
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IO and data serving with distributed storage, and highly
scalable data replication. All these developments were based
on our our 200-node Linux cluster built from commodity
components.

The high-resolution land surface simulation of LIS is a
highly coarse-grained parallel problem with intensive in-
put/output (10). To fully take advantage of this feature and
satisfy the performance, reliability and resource utilization
requirements, we have developed a job management system,
which is highly efficient in managing coarse-grained paral-
lel problems on distributed memory systems, especially for
Linux clusters. This system features strong fault-tolerance,
optimal resource utilization and flexibility. It also integrates
distributed visualization so the results can be inspected in
real-time without post-processing. In addition, to overcome
the 10 performance bottleneck, we implemented parallel 10
and distributed data storage, and expanded the GrADS-DODS
(GDS) [7] client-server system to support its functions over
distributed data, and to support GDS server farms with dy-
namic load balancing. This design increased LIS performance
at least 4 times. Moreover, our novel approach in applying
peer-to-peer (P2P) technology to high-performance and highly
scalable data replication within our Linux cluster, eliminated
the performance bottleneck and management complexity of
the conventional client—server paradigm. The implementation
of the P2P system, BitTorrent (BT) [2], on our cluster enables
us to replicate large amount of data to all the cluster nodes
simultaneously without traffic congestion, with guaranteed
data integrity and with an aggregate throughput at least 5 to
6 times more than conventional NFS based file sharing.

Section 11 gives a brief introduction to LIS’ primary com-
puting platform, the 200-node Linux cluster. The LIS parallel
job management system is described in Sec. Ill, followed by
the parallel 10 design in Sec. IV. The P2P data replication
technology is demonstrated in Sec. V, and a summary of these
developments is given in Sec. VI.
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Fig. 1. Physica architecture and network layout of the LIS Linux cluster.
The 8 10 nodes' hostnames are X1, X2, ..., X8, respectively, while each
compute node is named Al, A2, ..., A24; B1, B2, ..., B24; ..., H1, H2, ...,
H24, depending on which of the 8 sub-clusters it belongs.

Il. LIS LINUX CLUSTER

LIS’ primary computing engine and development platform
is the Linux cluster, constructed for the project Milestone-f in
the summer of 2002. The cluster was originally built with 200
nodes from commodity components, including eight 10 nodes
and 192 (24x8) compute nodes.

Each 10 node is configured with dual AMD XP 2000 CPUs,
2 GB DDR memory, 220 GB internal disk storage, 2 built-in
Ultra-SCSI channels, 2 built-in fast Ethernet adapters, and 1
gigabit Ethernet adapter (two of the 10 nodes have two each).
In addition, each 10 node has one external Promise RAID
systems for file storage, with a capacity of 1.2 TB in each
RAID system.

Each of the 192 compute nodes has an AMD XP 1800
CPU, 512 MB memory, an internal IDE hard drive of 81 GB,
and a built-in fast Ethernet adapter. Subsequent updates added
another 512 MB memory to about half of the compute nodes,
making the cluster a somewhat heterogeneous system.

Overall, the LIS cluster has 208 AMD XP processors of
1.53 GHz and above, 160 GB of memory, 24 TB of disk
space, 192 fast Ethernet connections, and 10 gigabit Ethernet
connections. The physical architecture and network layout is
shown in Fig. 1. The 192 compute nodes and 8 10 nodes are
grouped into 8 branches, with each branch logically having
24 compute nodes and 1 10 node connected to a common
Ethernet switch, with all the switches inter-connected. Thus
the system can be used as one big cluster with 192 nodes, or
8 small clusters each with 24 nodes, or any combination in
between.

I1l. LIS JoB MANGEMENT SYSTEM

The land surface simulation in LIS is a coarse-grained
parallelization problem, in that each grid point on the domain
has very weak horizontal interaction with its neighbors. Thus

we can divide LIS’ global domain into sub-domains, and run
each sub-domain independently. Such a problem fits best with
a distributed platform such as the LIS cluster and does not
require low-latency but expensive interconnects. However, to
fully take advantage of this characteristics, we need a job
management system which efficiently manages the jobs over
the cluster nodes, with strong fault-tolerance and flexibility.

Our job management system is based on the “pool of tasks”
scheme. Our implementation distinguishes itself with strong
fault-tolerance in the face of node crashes, thus lowering the
hardware requirements for the compute nodes. Supported by
parallel and distributed input/output, this scheme for LIS has
shown very good scalability and optimal resource utilization.

Figure 2 shows LIS’ parallelization scheme. The “pool of
tasks” paradigm we are using is equivalent to a master—slave
programming model, where we use one of the 10 nodes as
the master node and it distributes jobs to the slave (compute)
nodes. We refer to the master node as “farmer” and the
compute nodes as “dogs”, and the jobs the master node gives
out “bones”.

The master node (“farmer”) will keep three pools on hand
when starting the job: pool of unfinished jobs (“bones”),
finished ones (“done”), and ones fetched and being processes
by compute nodes (“munching”). At the beginning, all the jobs
are stored in the “bones” pool. Each compute node (“dog”)
sends a request to the master to request a job from it, and starts
working on it when a job is assigned by the master node. The
compute nodes do not get jobs directly by themselves from the
“bones” pool, to eliminate the complexity of race condition
management. The master node then moves the assigned jobs
to the “munching” pool, and starts a timer for each assigned
job. The timer specification will be based on the estimation
of the execution time a compute node needs to finish a job.
When a compute node finishes a job and notifies the master
node before the job’s corresponding timer runs out, this piece
is regarded a finished job, and the master node moves it from
the “munching” pool to the “done” pool. And the compute
node goes on to request another job until the “bones” pool is
empty.

The fault-tolerance is realized with the time—out mechanism
based on the timer the master node keeps. If the timer of a
fetched job runs out before the compute node reports back, the
master node then assumes that that particular compute node
must have crashed, and then moves that timed-out job from the
“munching” table back to the “bones” table for other compute
nodes to fetch. The flow-chart on the left of Fig. 2 shows the
master node’s job handling and scheduling process, and the
various states of the three pools (right) corresponding to the
stages in the flow-chart.

This farmer-dog system maximizes resource utilization even
when the compute nodes (“dogs”) have heterogeneous mem-
ory/CPU configuration, as the case with the LIS cluster.
Each job (“bone”) naturally has different number of total
land points, depending on its location on the Earth. The job
management system will make sure all the nodes will get to
work on the biggest jobs they can handle first, depending on
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Fig. 3.  Normalized timing (left y-axis) and simulation throughput (right
y-axis) for LIS with CLM LSM and the two base forcing settings. Five (5)
GDS servers were used. The P/2 timing curve is based on 1-node timing
extrapolated from 16-node timing for CLM/GEQS, and 32-node timing for
CLM/GDAS. The maximum number of compute nodes used for CLM/GEOS
is 152, and for CLM/GDAS 164.

their hardware configuration. Only after they finish the biggest
jobs can they continue to work on smaller jobs. This scheme
ensures the more powerful nodes are not fighting for small
jobs with less powerful nodes before they finish the jobs only
they can handle. This has proven to be working well on the
LIS cluster, since about half of the computer nodes have 1GB
memory while the other half have only 512 MB.

Figure 3 shows one of the scaling test results for LIS with
the job management system. The results were obtained by
timing LIS runs with CLM and either GDAS or GEOS base
forcing. For comparison, the estimated P/2 scaling curves are
also shown as dashed lines in Fig. 3.

As the figure shows, CLM/GEOS with 16 nodes ran at
approximately 0.35ms/ grid-day, which is only slightly faster
than the target performance requirement of 0.4ms/grid - day.
However, with 32 nodes, CLM/GEOS timed 0.2ms/grid -
day, and CLM/GDAS scored 0.27ms/grid - day. The timing
decreased significantly as the number of compute node was
increased, and CLM/GEOS ran at 0.076ms/grid - day with
152 nodes, and CLM/GDAS 0.05ms/grid - day with 164
nodes, corresponding to throughputs of 4.4 days/day and 6.7
days/day, respectively.

CLM showed better scaling than P/2 curve up to 128
compute nodes. CLM/GDAS still performed better than P/2
even with 164 nodes.

1V. PARALLEL 1O AND DISTRIBUTED DATA STORAGE

As we are using the large number of CPUs for the highly
parallel runs for LIS, the input/output quickly became the
performance bottleneck. First of all, while LIS is performing
global land surface simulations with an ensemble of land
surface models (e.g., CLM, NOAH and VIC), it requires a
variety of input data, including land surface parameters and
model and observational forcing. These input data need to
be fed to each individual compute node dynamically with
their desired subsets. Next, after getting the input data, each
compute node will produce output data with a volume of at
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Fig. 4. Parale 10 and distributed storage design for LIS. Input data are fed
to the cluster by an array of paralel GDS servers (left). The compute nodes
write their output data directly on their local disks. A modifi ed GDS (right)
can serve the output data from the compute nodes' disks, eliminating the need
of data aggregation onto 10 nodes.

least two orders of the input data.

Figure 4 shows LIS’ parallel 10 design and distributed
storage, to solve the 10 bottleneck problem. The input data
were mirrored on all the 10 nodes. For input data serving, we
take advantage of GDS server’ dynamic sub-setting capability
to serve only the subset of the input data to each compute node
from request-response transactions, thus reducing the total data
traffic. To further boost input data serving throughput, we used
multiple GDS servers running in parallel on the 10 nodes, and
implemented a dynamic load balancing scheme to optimize the
collective performance of the GDS servers. To demonstrate
how this setting affects LIS performance, we performed tests
with 2, 3, 4, 5, and 6 GDS servers. The timing results for
NOAH/GEOS runs with 128 compute nodes are shown in
Fig. 5.

As the figure shows, the performance improved as the
number of GDS servers was increased. With 2 GDS servers,
NOAH/GEOS ran at 0.122ms/grid - day, while with 6 GDS
servers, it ran at approximately 0.078ms/grid - day, with a
throughput improvement from 2.8 days/day to 4.4 days/day.
However, the most significant performance improvement took
place when the number of GDS servers was increased from
2 to 3. More GDS servers helped, but not as much. It is
reasonable to expect that more GDS servers (4, 5, and 6) will
be more helpful for runs with when the number of compute
nodes is further increased.

The output bottleneck poses a much more severe challenge
if we follow the conventional approach to first aggregate the
output data to a central storage system and then serve the users
from there. We completely eliminated the need for central data
storage by modifying the GDS server system, to expand its
capability to serve data directly off the local disks of every
compute nodes. Therefore, each compute node directly writes
its output data to its local disk, and then the modified GDS
system can treat the collection of the compute node disks as
a big disk system, and serve the output data to users from
there the same way as from a single local disk. By doing this,
the output bottleneck for LIS runs is completely eliminated.
Otherwise, it is estimated that it would take 4 to 10 days
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Fig. 2. Task-pool-based paralelization scheme in LIS. Left panel shows the logic of the master node. Right panel shows the movement of jobs in the three
pools: bones, munching and done. Each job in the “munching” pool is timed so when a job is timed out (red block), it will be put back to the “bones’ pool
for other nodes to handle. Time-out happens only when a compute node crashes. On the other hand, code crashes will be detected and handled immediately.

Improved Performance with Parallel GDS Servers

24
0.135-

1A =
3 =
£,0105 2
o =
< g
2 009 2
E 42
=

0.075

0.06

Number of GDS servers

Fig. 5. Normalized timing (left y-axis) and simulation throughput (right y-
axis) as functions of the number of GDS servers used, for LIS with NOAH
LSM, GEOS base forcing and 128 compute nodes. The output data were
saved on each compute node's local disks, and served users the same way as
from a central storage.

to finish a 1 day LIS simulation, if the conventional data
aggregation and serving were still used.

V. DATA REPLICATION WITH PEER-TO-PEER
TECHNOLOGY

Although it is trivial to copy small files from one computer
to a few other computers over the network via conventional
approaches such as NFS, FTP or HTTP based file sharing,
it becomes a formidable task to copy a large amount of data
from one computer to hundreds of other computers by this
means, as with the case for data replication on the LIS Linux
cluster. The traditional client—server paradigm, such as NFS,
won’t scale when tens, or hundreds of clients are copying
data from the server, as either the server’s bandwidth will be
quickly saturated or the server gets overloaded with degraded
performance. In addition, the chance of data corruption greatly
increases as the data volume and network traffic are increases.
Worse still, if a node crashes in the middle of data replication,
it has to start over again from the beginning when it comes
back online.

LIS needs to pre-stage several Gigabytes of data to every
compute node from one node, as these data are static param-
eters and shared by all the compute nodes, and it would be
too expensive to let compute nodes to access the data during
runtime over the network. To efficiently replicate these datasets
within the cluster without incurring the complexity of client—
server approaches, we introduced one of the P2P technologies,
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Fig. 6. Comparison of conventional NFS-based and P2P-based data repli-
cation performance. The average aggregate bandwidth is defi ned as the tota
amount of data transfer divided by the total time taken to fi nish the transfer.
A file containing 2GB random data was used as the test dataset. The tests
were performed with al the nodes connected with fast Ethernet links.

BitTorrent (BT), to serve as the data replication channel with
the cluster.

To get data from one computer (the “seed”) to many others
(“peers™), BT first splits the data on the seed into small chunks.
Then each peer get a random chunk from the seed. Then
the peers can exchange with one another of the chunks and
eventually every peer will get all the chunks, thus the whole
dataset. Thus the data transfer is mostly taking place between
the peers. There is a meta-data server (“tracker”) which keeps
track which peer has which chunks, and also records the
message digest of each chunk. With the message digest, each
peer can guarantee the integrity of each chunk, eliminating the
possibility of data corruption. Finally, each peer can resume
previous transfer without starting over after a crash.

Figure 6 shows the test results on LIS cluster with the
conventional NFS based and P2P-based data replication. NFS
quickly reached the physical limit of the server’s bandwidth
with less then 10 clients, and saturated at a bandwidth of 11
MB/s. With BitTorrent, however, the aggregated bandwidth
scaled nearly linearly as the number of nodes was increased,
and for 74 nodes, it has an aggregated bandwidth 5 times
higher than NFS server’s. Due to the guaranteed data integrity,
no verification was needed after the data were replicated to all
the nodes.

VI. SUMMARY

The realtime, high-performance requirement of LIS poses
great challenges in the computing technology today. We have
to take non-conventional and innovative approaches to meet
these challenges and to keep pushing the envelope. Our contri-
bution in the advanced computational technologies made LIS
a successful and high-performance Earth modeling system.

We built a low-cost Linux cluster from commaodity com-
ponents to support LIS’ intensive computing needs. To fully
utilize the computing power of the cluster effectively, and to
take advantage of the parallel nature of land surface simula-
tions, we developed our own job management system, which

demonstrated great flexibility and strong fault-tolerance, and
plays a crucial rule in assuring LIS to run most efficiently and
fully utilizing the cluster.

With LIS’ scale of computation, the 10 is the greatest po-
tential performance bottleneck. We abandoned the traditional
approach of output aggregation on central storage devices, and
enhanced GDS server with innovative design to let it serve
distributedly-stored data to users, and set up the first GDS
server farm with parallel servers and dynamic load balancing,
to greatly increase the input performance of the whole system.

The need of large scale data replication for LIS’ compu-
tational needs promoted us to turn to novel approaches. We
applied P2P technology to help meet the performance goal of
high volume data replication with a large number of nodes.
Our implementation of BitTorrent on the Linux cluster proved
to be highly effective with our data replication needs.

With the performance results demonstrated by LIS, and
with the practical experience we gained from exploring and
employing new computational technologies, we believe these
technologies will be helpful in other areas as well. In particu-
lar, the technologies are not limited to the cluster environment;
they will be equally effective in Grid computing environments.
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